1,232 research outputs found

    A Survey of Dairy Cattle Behavior in Different Barns in Northern Italy

    Get PDF
    Due to its increasing pressure on dairy cows, studies that investigate how to cope with heat stress are needed. The heat stress affects multiple aspects of cows' lives, among which their behavior and welfare. In this study, a survey was carried out in eight farms located in Northern Italy to monitor and evaluate the environmental aspects of the barns and the behavioral responses of dairy cows. For one year, three periods were monitored: thermoneutral (T_S), hot (H_S) and cold (C_S) seasons. Temperature and relative humidity were measured by environmental sensors, and lying vs. standing time, number of lying bouts and their average duration were collected by accelerometers. The temperature-humidity index (THI) was quantified inside and outside of the barn. Results show that at the increase of the THI, behavioral adaptations occurred in all the farms, especially with a reduction of lying time and an increase of respiration rate. Four of the eight farms need interventions for improving the cows' welfare. Here, environmental problems should be solved by introducing or improving the efficacy of the forced ventilation or by modifying the barn structure. Monitoring dairy barns with sensors and Precision Livestock Farming techniques can be helpful for future livestock farming to alert farmers on the need for their interventions to respond immediately to unwanted barn living conditions

    Single molecule analysis of DNA wrapping and looping by a circular 14mer wheel of the bacteriophage 186 CI repressor

    Get PDF
    The lytic–lysogenic decision in bacteriophage 186 is governed by the 186 CI repressor protein in a unique way. The 186 CI is proposed to form a wheel-like oligomer that can mediate either wrapped or looped nucleoprotein complexes to provide the cooperative and competitive interactions needed for regulation. Although consistent with structural, biochemical and gene expression data, many aspects of this model are based on inference. Here, we use atomic force microscopy (AFM) to reveal the various predicted wrapped and looped species, and new ones, for CI regulation of lytic and lysogenic transcription. Automated AFM analysis showed CI particles of the predicted dimensions on the DNA, with CI multimerization favoured by DNA binding. Measurement of the length of the wrapped DNA segments indicated that CI may move on the DNA, wrapping or releasing DNA on either side of the wheel. Tethered particle motion experiments were consistent with wrapping and looping of DNA by CI in solution, where in contrast to λ repressor, the looped species were exceptionally stable. The CI regulatory system provides an intriguing comparison with that of nucleosomes, which share the ability to wrap and release similar sized segments of DNA.Haowei Wang, Ian B. Dodd, David D. Dunlap, Keith E. Shearwin, and Laura Finz

    Technical, economic, and environmental assessment of a collective integrated treatment system for energy recovery and nutrient removal from livestock manure

    Get PDF
    The aim of this 5-year study was to evaluate the technical, economic, and environmental performances of a collective-based integrated treatment system for bioenergy production and nutrients removal to improve the utilization efficiency and reduce the environmental impact of land applied livestock manure. The study involved 12 livestock production units located in an intensive livestock area designated as nitrate vulnerable zone with large N surplus. The treatment system consisted of an anaerobic digestion unit, a solid-liquid separation system, and a biological N removal process. Atmospheric emissions and nutrient losses in water and soil were examined for the environmental assessment, while estimated crop removal and nutrient utilization efficiencies were used for the agronomic assessment. The integrated treatment system achieved 49% removal efficiency for total solids (TS), 40% for total Kjeldahl nitrogen (TKN), and 41% for total phosphorous (TP). A surplus of 58kWh/t of treated manure was achieved considering the electricity produced by the biogas plant and consumed by the treatment plant and during transportation of raw and treated manure. A profit of 1.61 \ubf/t manure treated and an average reduction of global warming potential by 70% was also achieved. The acidification potential was reduced by almost 50%. The agronomic use of treated manure eliminated the TKN surplus and reduced the TP surplus by 94%. This collective integrated treatment system can be an environmentally and economically sustainable solution for farms to reduce N surplus in intensive livestock production areas

    A generalized theory of semiflexible polymers

    Get PDF
    DNA bending on length scales shorter than a persistence length plays an integral role in the translation of genetic information from DNA to cellular function. Quantitative experimental studies of these biological systems have led to a renewed interest in the polymer mechanics relevant for describing the conformational free energy of DNA bending induced by protein-DNA complexes. Recent experimental results from DNA cyclization studies have cast doubt on the applicability of the canonical semiflexible polymer theory, the wormlike chain (WLC) model, to DNA bending on biological length scales. This paper develops a theory of the chain statistics of a class of generalized semiflexible polymer models. Our focus is on the theoretical development of these models and the calculation of experimental observables. To illustrate our methods, we focus on a specific toy model of DNA bending. We show that the WLC model generically describes the long-length-scale chain statistics of semiflexible polymers, as predicted by the Renormalization Group. In particular, we show that either the WLC or our new model adequate describes force-extension, solution scattering, and long-contour-length cyclization experiments, regardless of the details of DNA bend elasticity. In contrast, experiments sensitive to short-length-scale chain behavior can in principle reveal dramatic departures from the linear elastic behavior assumed in the WLC model. We demonstrate this explicitly by showing that our toy model can reproduce the anomalously large short-contour-length cyclization J factors observed by Cloutier and Widom. Finally, we discuss the applicability of these models to DNA chain statistics in the context of future experiments

    A closed-loop automatic tuning method for velocity control of oscillatory mechatronic systems

    Get PDF
    In this paper a closed loop automatic tuning procedure for the velocity control of oscillatory mechatronic systems is proposed. The transfer function of the system is estimated relying only on the measurements on the motor side, resonances are identified and biquadratic filters and the PID controller are tuned in order to improve the pre-existing control system by reducing the oscillations on the load side. Experimental results obtained with a Hardware-In-The-Loop setup show the effectiveness of the method

    Fertigation of maize with digestate using drip irrigation and pivot systems

    Get PDF
    Digestate is a nutrient-rich fertilizer and appropriate techniques are required for its application during the maize season to reduce losses and increase the nitrogen use efficiency (NUE). The performance of two different fertigation techniques (drip irrigation and pivot) were assessed using the digestate liquid fraction. A two-year field test was carried out at two different sites in Lombardy, northern Italy. At each site, fertigation with pivot (P-F, site 1) or drip (D-F, site 2) systems was compared to reference fields where the same irrigation techniques without addition of digestate were used. During the two seasons, the performance of the fertigation systems, amount of fertilizers used, soil nitrogen content, yields, and nitrogen content of the harvested plants were monitored. The digestate application averaged 5 m3/ha per fertigation event with P-F and 4.9 m3/ha with D-F corresponding, respectively, to 28 and 23 kg N/ha. Both irrigation systems were suitable for fertigation provided that the digestate was adequately filtrated. Our results suggest that fertigation with digestate, if properly managed, can be applied during the growing season up to the full amount of nitrogen required by the crop

    Model for Gravitational Interaction between Dark Matter and Baryons

    Full text link
    We propose a phenomenological model where the gravitational interaction between dark matter and baryons is suppressed on small, subgalactic scales. We describe the gravitational force by adding a Yukawa contribution to the standard Newtonian potential and show that this interaction scheme is effectively suggested by the available observations of the inner rotation curves of small mass galaxies. Besides helping in interpreting the cuspy profile of dark matter halos observed in N-body simulations, this potential regulates the quantity of baryons within halos of different masses.Comment: 4 pages, 2 figures, final versio

    Soil respiration in a northeastern US temperate forest: a 22‐year synthesis

    Get PDF
    To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter‐annual variations in soil respiration (Rs), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site‐years of eddy‐covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (Re). Rs was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of Rs to experimental manipulations mimicking aspects of global change or aimed at partitioning Rs into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on Rs was transient, but in other cases the time series were not long enough to rule out long‐term changes in respiration rates. Inter‐annual variations in weather and phenology induced variation among annual Rs estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy‐covariance sites, aboveground respiration dominated Re early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns—high apparent rates of respiration during winter and very low rates in mid‐to‐late summer—at the Environmental Measurement Site suggest either bias in Rs and Re estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard‐to‐measure fluxes (e.g., wintertime Rs, unaccounted losses of CO2 from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of Re, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data‐rich analysis identifies important seasonal and experimental variations in Rs and Re and in the partitioning of Re above‐ vs. belowground

    A Polyphenol-Rich Extract of Olive Mill Wastewater Enhances Cancer Chemotherapy Effects, While Mitigating Cardiac Toxicity

    Get PDF
    Cardiovascular toxicity remains one of the most adverse side effects in cancer patients receiving chemotherapy. Extra-virgin olive oil (EVOO) is rich in cancer preventive polyphenols endowed with anti-inflammatory, anti-oxidant activities which could exert protective effects on heart cells. One very interesting derivative of EVOO preparation is represented by purified extracts from olive mill waste waters (OMWW) rich in polyphenols. Here, we have investigated the anti-cancer activity of a OMWW preparation, named A009, when combined with chemotherapeutics, as well as its potential cardioprotective activities. Mice bearing prostate cancer (PCa) xenografts were treated with cisplatin, alone or in combination with A009. In an in vivo model, we found synergisms of A009 and cisplatin in reduction of prostate cancer tumor weight. Hearts of mice were analyzed, and the mitochondria were studied by transmission electron microscopy. The hearts of mice co-treated with A009 extracts along with cisplatin had reduced mitochondria damage compared to the those treated with chemotherapy alone, indicating a cardioprotective role. To confirm the in vivo results, tumor cell lines and rat cardiomyocytes were treated with cisplatin in vitro, with and without A009. Another frequently used chemotherapeutic agent 5-fluorouracil (5-FU), was also tested in this assay, observing a similar effect. In vitro, the combination of A009 with cisplatin or 5-FU was effective in decreasing prostate and colon cancer cell growth, while it did not further reduce growth of rat cardiomyocytes also treated with cisplatin or 5-FU. A009 cardioprotective effects towards side effects caused by 5-FU chemotherapy were further investigated, using cardiomyocytes freshly isolated from mice pups. A009 mitigated toxicity of 5-FU on primary cultures of mouse cardiomyocytes. Our study demonstrates that the polyphenol rich purified A009 extracts enhance the effect of chemotherapy in vitro and in vivo, but mitigates chemotherpy adverse effects on heart and on isolated cardiomyocytes. Olive mill waste water extracts could therefore represent a potential candidate for cardiovascular prevention in patients undergoing cancer chemotherapy

    Soil respiration in a northeastern US temperate forest: a 22‐year synthesis

    Get PDF
    To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter‐annual variations in soil respiration (Rs), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site‐years of eddy‐covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (Re). Rs was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of Rs to experimental manipulations mimicking aspects of global change or aimed at partitioning Rs into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on Rs was transient, but in other cases the time series were not long enough to rule out long‐term changes in respiration rates. Inter‐annual variations in weather and phenology induced variation among annual Rs estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy‐covariance sites, aboveground respiration dominated Re early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns—high apparent rates of respiration during winter and very low rates in mid‐to‐late summer—at the Environmental Measurement Site suggest either bias in Rs and Re estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard‐to‐measure fluxes (e.g., wintertime Rs, unaccounted losses of CO2 from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of Re, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data‐rich analysis identifies important seasonal and experimental variations in Rs and Re and in the partitioning of Re above‐ vs. belowground
    • 

    corecore